import os
# os.environ['ANTHROPIC_LOG'] = 'debug'
Claudette’s source
This is the ‘literate’ source code for Claudette. You can view the fully rendered version of the notebook here, or you can clone the git repo and run the interactive notebook in Jupyter. The notebook is converted the Python module claudette/core.py using nbdev. The goal of this source code is to both create the Python module, and also to teach the reader how it is created, without assuming much existing knowledge about Claude’s API.
Most of the time you’ll see that we write some source code first, and then a description or discussion of it afterwards.
Setup
To print every HTTP request and response in full, uncomment the above line. This functionality is provided by Anthropic’s SDK.
If you’re reading the rendered version of this notebook, you’ll see an “Exported source” collapsible widget below. If you’re reading the source notebook directly, you’ll see #| exports
at the top of the cell. These show that this piece of code will be exported into the python module that this notebook creates. No other code will be included – any other code in this notebook is just for demonstration, documentation, and testing.
You can toggle expanding/collapsing the source code of all exported sections by using the </> Code
menu in the top right of the rendered notebook page.
Exported source
= {
model_types # Anthropic
'claude-3-opus-20240229': 'opus',
'claude-3-5-sonnet-20241022': 'sonnet',
'claude-3-haiku-20240307': 'haiku-3',
'claude-3-5-haiku-20241022': 'haiku-3-5',
# AWS
'anthropic.claude-3-opus-20240229-v1:0': 'opus',
'anthropic.claude-3-5-sonnet-20241022-v2:0': 'sonnet',
'anthropic.claude-3-sonnet-20240229-v1:0': 'sonnet',
'anthropic.claude-3-haiku-20240307-v1:0': 'haiku',
# Google
'claude-3-opus@20240229': 'opus',
'claude-3-5-sonnet-v2@20241022': 'sonnet',
'claude-3-sonnet@20240229': 'sonnet',
'claude-3-haiku@20240307': 'haiku',
}
= list(model_types) all_models
Exported source
= ('claude-3-5-haiku-20241022',) text_only_models
These are the current versions and prices of Anthropic’s models at the time of writing.
= models[1]; model model
'claude-3-5-sonnet-20241022'
For examples, we’ll use Sonnet 3.5, since it’s awesome.
Antropic SDK
= Anthropic() cli
This is what Anthropic’s SDK provides for interacting with Python. To use it, pass it a list of messages, with content and a role. The roles should alternate between user and assistant.
After the code below you’ll see an indented section with an orange vertical line on the left. This is used to show the result of running the code above. Because the code is running in a Jupyter Notebook, we don’t have to use print
to display results, we can just type the expression directly, as we do with r
here.
= {'role': 'user', 'content': "I'm Jeremy"}
m = cli.messages.create(messages=[m], model=model, max_tokens=100)
r r
Hi Jeremy! I’m Claude. Nice to meet you.
- id:
msg_014DGJKfsH7pGC5U777P4xXj
- content:
[{'text': "Hi Jeremy! I'm Claude. Nice to meet you.", 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 10, 'output_tokens': 15}
Formatting output
That output is pretty long and hard to read, so let’s clean it up. We’ll start by pulling out the Content
part of the message. To do that, we’re going to write our first function which will be included to the claudette/core.py
module.
This is the first exported public function or class we’re creating (the previous export was of a variable). In the rendered version of the notebook for these you’ll see 4 things, in this order (unless the symbol starts with a single _
, which indicates it’s private):
- The signature (with the symbol name as a heading, with a horizontal rule above)
- A table of paramater docs (if provided)
- The doc string (in italics).
- The source code (in a collapsible “Exported source” block)
After that, we generally provide a bit more detail on what we’ve created, and why, along with a sample usage.
find_block
find_block (r:collections.abc.Mapping, blk_type:type=<class 'anthropic.types.text_block.TextBlock'>)
Find the first block of type blk_type
in r.content
.
Type | Default | Details | |
---|---|---|---|
r | Mapping | The message to look in | |
blk_type | type | TextBlock | The type of block to find |
Exported source
def find_block(r:abc.Mapping, # The message to look in
type=TextBlock # The type of block to find
blk_type:
):"Find the first block of type `blk_type` in `r.content`."
return first(o for o in r.content if isinstance(o,blk_type))
This makes it easier to grab the needed parts of Claude’s responses, which can include multiple pieces of content. By default, we look for the first text block. That will generally have the content we want to display.
find_block(r)
TextBlock(text="Hi Jeremy! I'm Claude. Nice to meet you.", type='text')
def contents(r):
"Helper to get the contents from Claude response `r`."
= find_block(r)
blk if not blk and r.content: blk = r.content[0]
return blk.text.strip() if hasattr(blk,'text') else str(blk)
For display purposes, we often just want to show the text itself.
contents(r)
"Hi Jeremy! I'm Claude. Nice to meet you."
Exported source
@patch
def _repr_markdown_(self:(Message)):
= '\n- '.join(f'{k}: `{v}`' for k,v in self.model_dump().items())
det = re.sub(r'\$', '$', contents(self)) # escape `$` for jupyter latex
cts return f"""{cts}
<details>
- {det}
</details>"""
Jupyter looks for a _repr_markdown_
method in displayed objects; we add this in order to display just the content text, and collapse full details into a hideable section. Note that patch
is from fastcore, and is used to add (or replace) functionality in an existing class. We pass the class(es) that we want to patch as type annotations to self
. In this case, _repr_markdown_
is being added to Anthropic’s Message
class, so when we display the message now we just see the contents, and the details are hidden away in a collapsible details block.
r
Hi Jeremy! I’m Claude. Nice to meet you.
- id:
msg_014DGJKfsH7pGC5U777P4xXj
- content:
[{'text': "Hi Jeremy! I'm Claude. Nice to meet you.", 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 10, 'output_tokens': 15}
One key part of the response is the usage
key, which tells us how many tokens we used by returning a Usage
object.
We’ll add some helpers to make things a bit cleaner for creating and formatting these objects.
r.usage
In: 10; Out: 15; Cache create: 0; Cache read: 0; Total: 25
usage
usage (inp=0, out=0, cache_create=0, cache_read=0)
Slightly more concise version of Usage
.
Type | Default | Details | |
---|---|---|---|
inp | int | 0 | input tokens |
out | int | 0 | Output tokens |
cache_create | int | 0 | Cache creation tokens |
cache_read | int | 0 | Cache read tokens |
Exported source
def usage(inp=0, # input tokens
=0, # Output tokens
out=0, # Cache creation tokens
cache_create=0 # Cache read tokens
cache_read
):"Slightly more concise version of `Usage`."
return Usage(input_tokens=inp, output_tokens=out, cache_creation_input_tokens=cache_create, cache_read_input_tokens=cache_read)
The constructor provided by Anthropic is rather verbose, so we clean it up a bit, using a lowercase version of the name.
5) usage(
In: 5; Out: 0; Cache create: 0; Cache read: 0; Total: 5
Usage.total
Usage.total ()
Exported source
@patch(as_prop=True)
def total(self:Usage): return self.input_tokens+self.output_tokens+getattr(self, "cache_creation_input_tokens",0)+getattr(self, "cache_read_input_tokens",0)
Adding a total
property to Usage
makes it easier to see how many tokens we’ve used up altogether.
5,1).total usage(
6
Usage.__repr__
Usage.__repr__ ()
Return repr(self).
Exported source
@patch
def __repr__(self:Usage): return f'In: {self.input_tokens}; Out: {self.output_tokens}; Cache create: {getattr(self, "cache_creation_input_tokens",0)}; Cache read: {getattr(self, "cache_read_input_tokens",0)}; Total: {self.total}'
In python, patching __repr__
lets us change how an object is displayed. (More generally, methods starting and ending in __
in Python are called dunder
methods, and have some magic
behavior – such as, in this case, changing how an object is displayed.)
5) usage(
In: 5; Out: 0; Cache create: 0; Cache read: 0; Total: 5
Usage.__add__
Usage.__add__ (b)
Add together each of input_tokens
and output_tokens
Exported source
@patch
def __add__(self:Usage, b):
"Add together each of `input_tokens` and `output_tokens`"
return usage(self.input_tokens+b.input_tokens, self.output_tokens+b.output_tokens, getattr(self,'cache_creation_input_tokens',0)+getattr(b,'cache_creation_input_tokens',0), getattr(self,'cache_read_input_tokens',0)+getattr(b,'cache_read_input_tokens',0))
And, patching __add__
lets +
work on a Usage
object.
+r.usage r.usage
In: 20; Out: 30; Cache create: 0; Cache read: 0; Total: 50
Creating messages
Creating correctly formatted dict
s from scratch every time isn’t very handy, so we’ll import a couple of helper functions from the msglm
library.
Let’s use mk_msg
to recreate our msg {'role': 'user', 'content': "I'm Jeremy"}
from earlier.
= "I'm Jeremy"
prompt = mk_msg(prompt)
m = cli.messages.create(messages=[m], model=model, max_tokens=100)
r r
Hi Jeremy! Nice to meet you. I’m Claude. How are you today?
- id:
msg_01LEY7KgM5EowjZFWNmDvXSF
- content:
[{'text': "Hi Jeremy! Nice to meet you. I'm Claude. How are you today?", 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 10, 'output_tokens': 20}
We can pass more than just text messages to Claude. As we’ll see later we can also pass images, SDK objects, etc. To handle these different data types we need to pass the type along with our content to Claude.
Here’s an example of a multimodal message containing text and images.
{
'role': 'user',
'content': [
{'type':'text', 'text':'What is in the image?'},
{
'type':'image',
'source': {
'type':'base64', 'media_type':'media_type', 'data': 'data'
}
}
]
}
mk_msg
infers the type automatically and creates the appropriate data structure.
LLMs, don’t actually have state, but instead dialogs are created by passing back all previous prompts and responses every time. With Claude, they always alternate user and assistant. We’ll use mk_msgs
from msglm
to make it easier to build up these dialog lists.
= mk_msgs([prompt, r, "I forgot my name. Can you remind me please?"])
msgs msgs
[{'role': 'user', 'content': "I'm Jeremy"},
{'role': 'assistant',
'content': [TextBlock(text="Hi Jeremy! Nice to meet you. I'm Claude. How are you today?", type='text')]},
{'role': 'user', 'content': 'I forgot my name. Can you remind me please?'}]
=msgs, model=model, max_tokens=200) cli.messages.create(messages
Your name is Jeremy, as you just told me.
- id:
msg_01DpRe74AAmT46avwApttV8t
- content:
[{'text': 'Your name is Jeremy, as you just told me.', 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 44, 'output_tokens': 14}
Client
Client
Client (model, cli=None, log=False)
Basic Anthropic messages client.
Exported source
class Client:
def __init__(self, model, cli=None, log=False):
"Basic Anthropic messages client."
self.model,self.use = model,usage()
self.text_only = model in text_only_models
self.log = [] if log else None
self.c = (cli or Anthropic(default_headers={'anthropic-beta': 'prompt-caching-2024-07-31'}))
We’ll create a simple Client
for Anthropic
which tracks usage stores the model to use. We don’t add any methods right away – instead we’ll use patch
for that so we can add and document them incrementally.
= Client(model)
c c.use
In: 0; Out: 0; Cache create: 0; Cache read: 0; Total: 0
Exported source
@patch
def _r(self:Client, r:Message, prefill=''):
"Store the result of the message and accrue total usage."
if prefill:
= find_block(r)
blk = prefill + (blk.text or '')
blk.text self.result = r
self.use += r.usage
self.stop_reason = r.stop_reason
self.stop_sequence = r.stop_sequence
return r
We use a _
prefix on private methods, but we document them here in the interests of literate source code.
_r
will be used each time we get a new result, to track usage and also to keep the result available for later.
c._r(r) c.use
In: 10; Out: 20; Cache create: 0; Cache read: 0; Total: 30
Whereas OpenAI’s models use a stream
parameter for streaming, Anthropic’s use a separate method. We implement Anthropic’s approach in a private method, and then use a stream
parameter in __call__
for consistency:
Exported source
@patch
def _log(self:Client, final, prefill, msgs, maxtok=None, sp=None, temp=None, stream=None, stop=None, **kwargs):
self._r(final, prefill)
if self.log is not None: self.log.append({
"msgs": msgs, "prefill": prefill, **kwargs,
"msgs": msgs, "prefill": prefill, "maxtok": maxtok, "sp": sp, "temp": temp, "stream": stream, "stop": stop, **kwargs,
"result": self.result, "use": self.use, "stop_reason": self.stop_reason, "stop_sequence": self.stop_sequence
})return self.result
Exported source
@patch
def _stream(self:Client, msgs:list, prefill='', **kwargs):
with self.c.messages.stream(model=self.model, messages=mk_msgs(msgs), **kwargs) as s:
if prefill: yield(prefill)
yield from s.text_stream
self._log(s.get_final_message(), prefill, msgs, **kwargs)
Claude supports adding an extra assistant
message at the end, which contains the prefill – i.e. the text we want Claude to assume the response starts with. However Claude doesn’t actually repeat that in the response, so for convenience we add it.
Exported source
@patch
def _precall(self:Client, msgs, prefill, stop, kwargs):
= [prefill.strip()] if prefill else []
pref if not isinstance(msgs,list): msgs = [msgs]
if stop is not None:
if not isinstance(stop, (list)): stop = [stop]
"stop_sequences"] = stop
kwargs[= mk_msgs(msgs+pref)
msgs return msgs
@patch
@delegates(messages.Messages.create)
def __call__(self:Client,
list, # List of messages in the dialog
msgs:='', # The system prompt
sp=0, # Temperature
temp=4096, # Maximum tokens
maxtok='', # Optional prefill to pass to Claude as start of its response
prefillbool=False, # Stream response?
stream:=None, # Stop sequence
stop**kwargs):
"Make a call to Claude."
= self._precall(msgs, prefill, stop, kwargs)
msgs if stream: return self._stream(msgs, prefill=prefill, max_tokens=maxtok, system=sp, temperature=temp, **kwargs)
= self.c.messages.create(
res =self.model, messages=msgs, max_tokens=maxtok, system=sp, temperature=temp, **kwargs)
modelreturn self._log(res, prefill, msgs, maxtok, sp, temp, stream=stream, **kwargs)
Defining __call__
let’s us use an object like a function (i.e it’s callable). We use it as a small wrapper over messages.create
. However we’re not exporting this version just yet – we have some additions we’ll make in a moment…
= Client(model, log=True)
c c.use
In: 0; Out: 0; Cache create: 0; Cache read: 0; Total: 0
'Hi') c(
Hello! How can I help you today?
- id:
msg_01HfuhNfXtyGgDgv9u8PEb8K
- content:
[{'text': 'Hello! How can I help you today?', 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 8, 'output_tokens': 12}
c.use
In: 8; Out: 12; Cache create: 0; Cache read: 0; Total: 20
Let’s try out prefill:
= "Concisely, what is the meaning of life?"
q = 'According to Douglas Adams,' pref
=pref) c(q, prefill
According to Douglas Adams, it’s 42. More seriously, there’s no universal answer - it’s deeply personal. Common perspectives include: finding happiness, making meaningful connections, pursuing purpose through work/creativity, helping others, or simply experiencing and appreciating existence.
- id:
msg_018U2iSrXyBJKAG4ABT2vrKS
- content:
[{'text': "According to Douglas Adams, it's 42. More seriously, there's no universal answer - it's deeply personal. Common perspectives include: finding happiness, making meaningful connections, pursuing purpose through work/creativity, helping others, or simply experiencing and appreciating existence.", 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 24, 'output_tokens': 52}
We can pass stream=True
to stream the response back incrementally:
for o in c('Hi', stream=True): print(o, end='')
Hello! How can I help you today?
c.use
In: 40; Out: 76; Cache create: 0; Cache read: 0; Total: 116
for o in c(q, prefill=pref, stream=True): print(o, end='')
According to Douglas Adams, it's 42. More seriously, there's no universal answer - it's deeply personal. Common perspectives include: finding happiness, making meaningful connections, pursuing purpose through work/creativity, helping others, or simply experiencing and appreciating existence.
c.use
In: 64; Out: 128; Cache create: 0; Cache read: 0; Total: 192
Pass a stop seauence if you want claude to stop generating text when it encounters it.
"Count from 1 to 10", stop="5") c(
1 2 3 4
- id:
msg_01Gzjd9hCxEetsQ9VWPvzXwP
- content:
[{'text': '1\n2\n3\n4\n', 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
stop_sequence
- stop_sequence:
5
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 15, 'output_tokens': 10}
This also works with streaming, and you can pass more than one stop sequence:
for o in c("Count from 1 to 10", stop=["2", "yellow"], stream=True): print(o, end='')
print(c.stop_reason, c.stop_sequence)
1
stop_sequence 2
You can check the logs:
-1] c.log[
{'msgs': [{'role': 'user', 'content': 'Count from 1 to 10'}],
'prefill': '',
'max_tokens': 4096,
'system': '',
'temperature': 0,
'stop_sequences': ['2', 'yellow'],
'maxtok': None,
'sp': None,
'temp': None,
'stream': None,
'stop': None,
'result': Message(id='msg_01J46frXj93Ssi5NBo8HJgtx', content=[TextBlock(text='1\n', type='text')], model='claude-3-5-sonnet-20241022', role='assistant', stop_reason='stop_sequence', stop_sequence='2', type='message', usage=In: 15; Out: 4; Cache create: 0; Cache read: 0; Total: 19),
'use': In: 94; Out: 142; Cache create: 0; Cache read: 0; Total: 236,
'stop_reason': 'stop_sequence',
'stop_sequence': '2'}
We’ve shown the token usage but we really care about is pricing. Let’s extract the latest pricing from Anthropic into a pricing
dict.
get_pricing
get_pricing (m, u)
Exported source
def get_pricing(m, u):
return pricing[m][:3] if u.prompt_token_count < 128_000 else pricing[m][3:]
We’ll patch Usage
to enable it compute the cost given pricing.
Usage.cost
Usage.cost (costs:tuple)
Exported source
@patch
def cost(self:Usage, costs:tuple) -> float:
= getattr(self, "cache_creation_input_tokens",0), getattr(self, "cache_read_input_tokens",0)
cache_w, cache_r return sum([self.input_tokens * costs[0] + self.output_tokens * costs[1] + cache_w * costs[2] + cache_r * costs[3]]) / 1e6
Client.cost
Client.cost ()
Exported source
@patch(as_prop=True)
def cost(self: Client) -> float: return self.use.cost(pricing[model_types[self.model]])
get_costs
get_costs (c)
Exported source
def get_costs(c):
= pricing[model_types[c.model]]
costs
= c.use.input_tokens * costs[0] / 1e6
inp_cost = c.use.output_tokens * costs[1] / 1e6
out_cost
= c.use.cache_creation_input_tokens
cache_w = c.use.cache_read_input_tokens
cache_r = cache_w * costs[2] + cache_r * costs[3] / 1e6
cache_cost return inp_cost, out_cost, cache_cost, cache_w + cache_r
Exported source
@patch
def _repr_markdown_(self:Client):
if not hasattr(self,'result'): return 'No results yet'
= contents(self.result)
msg = get_costs(self)
inp_cost, out_cost, cache_cost, cached_toks return f"""{msg}
| Metric | Count | Cost (USD) |
|--------|------:|-----:|
| Input tokens | {self.use.input_tokens:,} | {inp_cost:.6f} |
| Output tokens | {self.use.output_tokens:,} | {out_cost:.6f} |
| Cache tokens | {cached_toks:,} | {cache_cost:.6f} |
| **Total** | **{self.use.total:,}** | **${self.cost:.6f}** |"""
c
1
Metric | Count | Cost (USD) |
---|---|---|
Input tokens | 94 | 0.000282 |
Output tokens | 142 | 0.002130 |
Cache tokens | 0 | 0.000000 |
Total | 236 | $0.002412 |
Tool use
Let’s now add tool use (aka function calling).
mk_tool_choice
mk_tool_choice (choose:Union[str,bool,NoneType])
Create a tool_choice
dict that’s ‘auto’ if choose
is None
, ‘any’ if it is True, or ‘tool’ otherwise
Exported source
def mk_tool_choice(choose:Union[str,bool,None])->dict:
"Create a `tool_choice` dict that's 'auto' if `choose` is `None`, 'any' if it is True, or 'tool' otherwise"
return {"type": "tool", "name": choose} if isinstance(choose,str) else {'type':'any'} if choose else {'type':'auto'}
print(mk_tool_choice('sums'))
print(mk_tool_choice(True))
print(mk_tool_choice(None))
{'type': 'tool', 'name': 'sums'}
{'type': 'any'}
{'type': 'auto'}
Claude can be forced to use a particular tool, or select from a specific list of tools, or decide for itself when to use a tool. If you want to force a tool (or force choosing from a list), include a tool_choice
param with a dict from mk_tool_choice
.
For testing, we need a function that Claude can call; we’ll write a simple function that adds numbers together, and will tell us when it’s being called:
def sums(
int, # First thing to sum
a:int=1 # Second thing to sum
b:-> int: # The sum of the inputs
) "Adds a + b."
print(f"Finding the sum of {a} and {b}")
return a + b
= 604542,6458932
a,b = f"What is {a}+{b}?"
pr = "You are a summing expert." sp
Claudette can autogenerate a schema thanks to the toolslm
library. We’ll force the use of the tool using the function we created earlier.
=[get_schema(sums)]
tools= mk_tool_choice('sums') choice
We’ll start a dialog with Claude now. We’ll store the messages of our dialog in msgs
. The first message will be our prompt pr
, and we’ll pass our tools
schema.
= mk_msgs(pr)
msgs = c(msgs, sp=sp, tools=tools, tool_choice=choice)
r r
ToolUseBlock(id=‘toolu_01KKw1G3uhLK3v496CryhBUT’, input={‘a’: 604542, ‘b’: 6458932}, name=‘sums’, type=‘tool_use’)
- id:
msg_019BhBohaPwm8MhAjSkdKTN7
- content:
[{'id': 'toolu_01KKw1G3uhLK3v496CryhBUT', 'input': {'a': 604542, 'b': 6458932}, 'name': 'sums', 'type': 'tool_use'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
tool_use
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 442, 'output_tokens': 53}
When Claude decides that it should use a tool, it passes back a ToolUseBlock
with the name of the tool to call, and the params to use.
We don’t want to allow it to call just any possible function (that would be a security disaster!) so we create a namespace – that is, a dictionary of allowable function names to call.
= mk_ns(sums)
ns ns
{'sums': <function __main__.sums(a: int, b: int = 1) -> int>}
mk_funcres
mk_funcres (tuid, res)
Given tool use id and the tool result, create a tool_result response.
Exported source
def mk_funcres(tuid, res):
"Given tool use id and the tool result, create a tool_result response."
return dict(type="tool_result", tool_use_id=tuid, content=str(res))
We can now use the function requested by Claude. We look it up in ns
, and pass in the provided parameters.
= find_block(r, ToolUseBlock)
fc = mk_funcres(fc.id, call_func(fc.name, fc.input, ns=ns))
res res
Finding the sum of 604542 and 6458932
{'type': 'tool_result',
'tool_use_id': 'toolu_01KKw1G3uhLK3v496CryhBUT',
'content': '7063474'}
def contents(r):
"Helper to get the contents from Claude response `r`."
= find_block(r)
blk if not blk and r.content: blk = r.content[0]
if hasattr(blk,'text'): return blk.text.strip()
elif hasattr(blk,'content'): return blk.content.strip()
return str(blk)
mk_toolres
mk_toolres (r:collections.abc.Mapping, ns:Optional[collections.abc.Mapping]=None, obj:Optional=None)
Create a tool_result
message from response r
.
Type | Default | Details | |
---|---|---|---|
r | Mapping | Tool use request response from Claude | |
ns | Optional | None | Namespace to search for tools |
obj | Optional | None | Class to search for tools |
Exported source
def mk_toolres(
# Tool use request response from Claude
r:abc.Mapping, =None, # Namespace to search for tools
ns:Optional[abc.Mapping]=None # Class to search for tools
obj:Optional
):"Create a `tool_result` message from response `r`."
= getattr(r, 'content', [])
cts = [mk_msg(r)]
res if ns is None: ns=globals()
if obj is not None: ns = mk_ns(obj)
= [mk_funcres(o.id, call_func(o.name, o.input, ns)) for o in cts if isinstance(o,ToolUseBlock)]
tcs if tcs: res.append(mk_msg(tcs))
return res
In order to tell Claude the result of the tool call, we pass back the tool use assistant request and the tool_result
response.
= mk_toolres(r, ns=ns)
tr tr
Finding the sum of 604542 and 6458932
[{'role': 'assistant',
'content': [ToolUseBlock(id='toolu_01KKw1G3uhLK3v496CryhBUT', input={'a': 604542, 'b': 6458932}, name='sums', type='tool_use')]},
{'role': 'user',
'content': [{'type': 'tool_result',
'tool_use_id': 'toolu_01KKw1G3uhLK3v496CryhBUT',
'content': '7063474'}]}]
We add this to our dialog, and now Claude has all the information it needs to answer our question.
+= tr
msgs =sp, tools=tools)) contents(c(msgs, sp
'The sum of 604542 and 6458932 is 7063474.'
-1]) contents(msgs[
'7063474'
This works with methods as well – in this case, use the object itself for ns
:
class Dummy:
def sums(
self,
int, # First thing to sum
a:int=1 # Second thing to sum
b:-> int: # The sum of the inputs
) "Adds a + b."
print(f"Finding the sum of {a} and {b}")
return a + b
= [get_schema(Dummy.sums)]
tools = Dummy()
o = c(pr, sp=sp, tools=tools, tool_choice=choice)
r = mk_toolres(r, obj=o)
tr += tr
msgs =sp, tools=tools)) contents(c(msgs, sp
Finding the sum of 604542 and 6458932
'The sum of 604542 and 6458932 is 7063474.'
get_types
get_types (msgs)
get_types(msgs)
['text', 'tool_use', 'tool_result', 'tool_use', 'tool_result']
Client.__call__
Client.__call__ (msgs:list, sp='', temp=0, maxtok=4096, prefill='', stream:bool=False, stop=None, tools:Optional[list]=None, tool_choice:Optional[dict]=None, metadata:MetadataParam|NotGiven=NOT_GIVEN, stop_sequences:List[str]|NotGiven=NOT_GIVEN, system:Unio n[str,Iterable[TextBlockParam]]|NotGiven=NOT_GIVEN, temperature:float|NotGiven=NOT_GIVEN, top_k:int|NotGiven=NOT_GIVEN, top_p:float|NotGiven=NOT_GIVEN, extra_headers:Headers|None=None, extra_query:Query|None=None, extra_body:Body|None=None, timeout:float|httpx.Timeout|None|NotGiven=NOT_GIVEN)
Make a call to Claude.
Type | Default | Details | |
---|---|---|---|
msgs | list | List of messages in the dialog | |
sp | str | The system prompt | |
temp | int | 0 | Temperature |
maxtok | int | 4096 | Maximum tokens |
prefill | str | Optional prefill to pass to Claude as start of its response | |
stream | bool | False | Stream response? |
stop | NoneType | None | Stop sequence |
tools | Optional | None | List of tools to make available to Claude |
tool_choice | Optional | None | Optionally force use of some tool |
metadata | MetadataParam | NotGiven | NOT_GIVEN | |
stop_sequences | List[str] | NotGiven | NOT_GIVEN | |
system | Union[str, Iterable[TextBlockParam]] | NotGiven | NOT_GIVEN | |
temperature | float | NotGiven | NOT_GIVEN | |
top_k | int | NotGiven | NOT_GIVEN | |
top_p | float | NotGiven | NOT_GIVEN | |
extra_headers | Headers | None | None | |
extra_query | Query | None | None | |
extra_body | Body | None | None | |
timeout | float | httpx.Timeout | None | NotGiven | NOT_GIVEN |
Exported source
@patch
@delegates(messages.Messages.create)
def __call__(self:Client,
list, # List of messages in the dialog
msgs:='', # The system prompt
sp=0, # Temperature
temp=4096, # Maximum tokens
maxtok='', # Optional prefill to pass to Claude as start of its response
prefillbool=False, # Stream response?
stream:=None, # Stop sequence
stoplist]=None, # List of tools to make available to Claude
tools:Optional[dict]=None, # Optionally force use of some tool
tool_choice:Optional[**kwargs):
"Make a call to Claude."
if tools: kwargs['tools'] = [get_schema(o) for o in listify(tools)]
if tool_choice: kwargs['tool_choice'] = mk_tool_choice(tool_choice)
= self._precall(msgs, prefill, stop, kwargs)
msgs if any(t == 'image' for t in get_types(msgs)): assert not self.text_only, f"Images are not supported by the current model type: {self.model}"
if stream: return self._stream(msgs, prefill=prefill, max_tokens=maxtok, system=sp, temperature=temp, **kwargs)
= self.c.messages.create(model=self.model, messages=msgs, max_tokens=maxtok, system=sp, temperature=temp, **kwargs)
res return self._log(res, prefill, msgs, maxtok, sp, temp, stream=stream, stop=stop, **kwargs)
= c(pr, sp=sp, tools=sums, tool_choice=sums)
r r
ToolUseBlock(id=‘toolu_01FjpEJNMt4yfU3aUZE7BVge’, input={‘a’: 604542, ‘b’: 6458932}, name=‘sums’, type=‘tool_use’)
- id:
msg_017MsFHATt9SihPjNr6HAYir
- content:
[{'id': 'toolu_01FjpEJNMt4yfU3aUZE7BVge', 'input': {'a': 604542, 'b': 6458932}, 'name': 'sums', 'type': 'tool_use'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
tool_use
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 438, 'output_tokens': 57}
= mk_toolres(r, ns=ns) tr
Finding the sum of 604542 and 6458932
Client.structured
Client.structured (msgs:list, tools:Optional[list]=None, obj:Optional=None, ns:Optional[collections.abc.Mapping]=None, sp='', temp=0, maxtok=4096, prefill='', stream:bool=False, stop=None, tool_choice:Optional[dict]=None, metadata:MetadataParam|NotGiven=NOT_GIVEN, stop_sequences:List[str]|NotGiven=NOT_GIVEN, system:Un ion[str,Iterable[TextBlockParam]]|NotGiven=NOT_GIVEN, temperature:float|NotGiven=NOT_GIVEN, top_k:int|NotGiven=NOT_GIVEN, top_p:float|NotGiven=NOT_GIVEN, extra_headers:Headers|None=None, extra_query:Query|None=None, extra_body:Body|None=None, timeout:float|httpx.Timeout|None|NotGiven=NOT_GIVEN)
Return the value of all tool calls (generally used for structured outputs)
Type | Default | Details | |
---|---|---|---|
msgs | list | List of messages in the dialog | |
tools | Optional | None | List of tools to make available to Claude |
obj | Optional | None | Class to search for tools |
ns | Optional | None | Namespace to search for tools |
sp | str | The system prompt | |
temp | int | 0 | Temperature |
maxtok | int | 4096 | Maximum tokens |
prefill | str | Optional prefill to pass to Claude as start of its response | |
stream | bool | False | Stream response? |
stop | NoneType | None | Stop sequence |
tool_choice | Optional | None | Optionally force use of some tool |
metadata | MetadataParam | NotGiven | NOT_GIVEN | |
stop_sequences | List[str] | NotGiven | NOT_GIVEN | |
system | Union[str, Iterable[TextBlockParam]] | NotGiven | NOT_GIVEN | |
temperature | float | NotGiven | NOT_GIVEN | |
top_k | int | NotGiven | NOT_GIVEN | |
top_p | float | NotGiven | NOT_GIVEN | |
extra_headers | Headers | None | None | |
extra_query | Query | None | None | |
extra_body | Body | None | None | |
timeout | float | httpx.Timeout | None | NotGiven | NOT_GIVEN |
Exported source
@patch
@delegates(Client.__call__)
def structured(self:Client,
list, # List of messages in the dialog
msgs:list]=None, # List of tools to make available to Claude
tools:Optional[=None, # Class to search for tools
obj:Optional=None, # Namespace to search for tools
ns:Optional[abc.Mapping]**kwargs):
"Return the value of all tool calls (generally used for structured outputs)"
= listify(tools)
tools = self(msgs, tools=tools, tool_choice=tools, **kwargs)
res if ns is None: ns=mk_ns(*tools)
if obj is not None: ns = mk_ns(obj)
= getattr(res, 'content', [])
cts = [call_func(o.name, o.input, ns=ns) for o in cts if isinstance(o,ToolUseBlock)]
tcs return tcs
Anthropic’s API does not support response formats directly, so instead we provide a structured
method to use tool calling to achieve the same result. The result of the tool is not passed back to Claude in this case, but instead is returned directly to the user.
=[sums]) c.structured(pr, tools
Finding the sum of 604542 and 6458932
[7063474]
c
ToolUseBlock(id=‘toolu_01G2p4yr8LhfbqUDbUwmPZJK’, input={‘a’: 604542, ‘b’: 6458932}, name=‘sums’, type=‘tool_use’)
Metric | Count | Cost (USD) |
---|---|---|
Input tokens | 3,423 | 0.010269 |
Output tokens | 461 | 0.006915 |
Cache tokens | 0 | 0.000000 |
Total | 3,884 | $0.017184 |
Custom Types with Tools Use
We need to add tool support for custom types too. Let’s test out custom types using a minimal example.
class Book(BasicRepr):
def __init__(self, title: str, pages: int): store_attr()
def __repr__(self):
return f"Book Title : {self.title}\nNumber of Pages : {self.pages}"
"War and Peace", 950) Book(
Book Title : War and Peace
Number of Pages : 950
def find_page(book: Book, # The book to find the halfway point of
int, # Percent of a book to read to, e.g. halfway == 50,
percent: -> int:
) "The page number corresponding to `percent` completion of a book"
return round(book.pages * (percent / 100.0))
get_schema(find_page)
{'name': 'find_page',
'description': 'The page number corresponding to `percent` completion of a book\n\nReturns:\n- type: integer',
'input_schema': {'type': 'object',
'properties': {'book': {'type': 'object',
'description': 'The book to find the halfway point of',
'$ref': '#/$defs/Book'},
'percent': {'type': 'integer',
'description': 'Percent of a book to read to, e.g. halfway == 50,'}},
'title': None,
'required': ['book', 'percent'],
'$defs': {'Book': {'type': 'object',
'properties': {'title': {'type': 'string', 'description': ''},
'pages': {'type': 'integer', 'description': ''}},
'title': 'Book',
'required': ['title', 'pages']}}}}
= mk_tool_choice('find_page')
choice choice
{'type': 'tool', 'name': 'find_page'}
Claudette will pack objects as dict, so we’ll transform tool functions with user-defined types into tool functions that accept a dict in lieu of the user-defined type.
First let’s convert a single argument:
_is_builtin
decides whether to pass an argument through as-is. Let’s check the argument conversion:
int), _is_builtin(Book), _is_builtin(List)) (_is_builtin(
(True, False, True)
555, int),
(_convert("title": "War and Peace", "pages": 923}, Book),
_convert({1, 2, 3, 4], List)) _convert([
(555,
Book Title : War and Peace
Number of Pages : 923,
[1, 2, 3, 4])
To apply tool()
to a function is to return a new function where the user-defined types are replaced with dictionary inputs.
tool
tool (func)
A function is transformed into a function with dict arguments substiuted for user-defined types. Built-in types such as percent
here are left untouched.
=Book("War and Peace", 950), percent=50) find_page(book
475
"title": "War and Peace", "pages": 950}, percent=50) tool(find_page)({
475
By passing tools wrapped by tool()
, user-defined types now work completes without failing in tool calls.
= c("How many pages do I have to read to get halfway through my 950 page copy of War and Peace", tools=[tool(find_page)])
r find_block(r, ToolUseBlock)
ToolUseBlock(id='toolu_01NZ5enGXBkj7dRT3AWZXbTx', input={'book': {'title': 'War and Peace', 'pages': 950}, 'percent': 50}, name='find_page', type='tool_use')
However, we don’t want the user to have to apply this transformation themselves, so in the next section we will will apply tool()
automatically to the list of tools as part of the Chat
class constructor.
Chat
Rather than manually adding the responses to a dialog, we’ll create a simple Chat
class to do that for us, each time we make a request. We’ll also store the system prompt and tools here, to avoid passing them every time.
Chat
Chat (model:Optional[str]=None, cli:Optional[__main__.Client]=None, sp='', tools:Optional[list]=None, temp=0, cont_pr:Optional[str]=None)
Anthropic chat client.
Type | Default | Details | |
---|---|---|---|
model | Optional | None | Model to use (leave empty if passing cli ) |
cli | Optional | None | Client to use (leave empty if passing model ) |
sp | str | Optional system prompt | |
tools | Optional | None | List of tools to make available to Claude |
temp | int | 0 | Temperature |
cont_pr | Optional | None | User prompt to continue an assistant response: assistant,[user:“…”],assistant |
Exported source
class Chat:
def __init__(self,
str]=None, # Model to use (leave empty if passing `cli`)
model:Optional[=None, # Client to use (leave empty if passing `model`)
cli:Optional[Client]='', # Optional system prompt
splist]=None, # List of tools to make available to Claude
tools:Optional[=0, # Temperature
tempstr]=None): # User prompt to continue an assistant response: assistant,[user:"..."],assistant
cont_pr:Optional["Anthropic chat client."
assert model or cli
assert cont_pr != "", "cont_pr may not be an empty string"
self.c = (cli or Client(model))
if tools: tools = [tool(t) for t in tools]
self.h,self.sp,self.tools,self.cont_pr,self.temp = [],sp,tools,cont_pr,temp
@property
def use(self): return self.c.use
The class stores the Client
that will provide the responses in c
, and a history of messages in h
.
= "Never mention what tools you use."
sp = Chat(model, sp=sp)
chat chat.c.use, chat.h
(In: 0; Out: 0; Cache create: 0; Cache read: 0; Total: 0, [])
chat.c.use.cost(pricing[model_types[chat.c.model]])
0.0
This is clunky. Let’s add cost
as a property for the Chat
class. It will pass in the appropriate prices for the current model to the usage cost calculator.
Chat.cost
Chat.cost ()
Exported source
@patch(as_prop=True)
def cost(self: Chat) -> float: return self.c.cost
chat.cost
0.0
Chat.__call__
Chat.__call__ (pr=None, temp=None, maxtok=4096, stream=False, prefill='', tool_choice:Optional[dict]=None, **kw)
Call self as a function.
Type | Default | Details | |
---|---|---|---|
pr | NoneType | None | Prompt / message |
temp | NoneType | None | Temperature |
maxtok | int | 4096 | Maximum tokens |
stream | bool | False | Stream response? |
prefill | str | Optional prefill to pass to Claude as start of its response | |
tool_choice | Optional | None | Optionally force use of some tool |
kw |
Exported source
@patch
def _stream(self:Chat, res):
yield from res
self.h += mk_toolres(self.c.result, ns=self.tools, obj=self)
Exported source
@patch
def _post_pr(self:Chat, pr, prev_role):
if pr is None and prev_role == 'assistant':
if self.cont_pr is None:
raise ValueError("Prompt must be given after assistant completion, or use `self.cont_pr`.")
= self.cont_pr # No user prompt, keep the chain
pr if pr: self.h.append(mk_msg(pr))
Exported source
@patch
def _append_pr(self:Chat,
=None, # Prompt / message
pr
):= nested_idx(self.h, -1, 'role') if self.h else 'assistant' # First message should be 'user'
prev_role if pr and prev_role == 'user': self() # already user request pending
self._post_pr(pr, prev_role)
Exported source
@patch
def __call__(self:Chat,
=None, # Prompt / message
pr=None, # Temperature
temp=4096, # Maximum tokens
maxtok=False, # Stream response?
stream='', # Optional prefill to pass to Claude as start of its response
prefilldict]=None, # Optionally force use of some tool
tool_choice:Optional[**kw):
if temp is None: temp=self.temp
self._append_pr(pr)
= self.c(self.h, stream=stream, prefill=prefill, sp=self.sp, temp=temp, maxtok=maxtok,
res =self.tools, tool_choice=tool_choice,**kw)
toolsif stream: return self._stream(res)
self.h += mk_toolres(self.c.result, ns=self.tools)
return res
The __call__
method just passes the request along to the Client
, but rather than just passing in this one prompt, it appends it to the history and passes it all along. As a result, we now have state!
= Chat(model, sp=sp) chat
"I'm Jeremy")
chat("What's my name?") chat(
Your name is Jeremy.
- id:
msg_018sYbKA3EyShN6N1t5PKduA
- content:
[{'text': 'Your name is Jeremy.', 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 41, 'output_tokens': 8}
chat.use, chat.cost
(In: 58; Out: 24; Cache create: 0; Cache read: 0; Total: 82, 0.000534)
Let’s try out prefill too:
= "Concisely, what is the meaning of life?"
q = 'According to Douglas Adams,' pref
chat.c.result
Your name is Jeremy.
- id:
msg_018sYbKA3EyShN6N1t5PKduA
- content:
[{'text': 'Your name is Jeremy.', 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 41, 'output_tokens': 8}
=pref) chat(q, prefill
According to Douglas Adams, 42. But in reality, it’s to find personal meaning through experiences, relationships, and pursuing what brings you fulfillment.
- id:
msg_01PGEcCWf5Syz2k2s236aJVA
- content:
[{'text': "According to Douglas Adams, 42. But in reality, it's to find personal meaning through experiences, relationships, and pursuing what brings you fulfillment.", 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 69, 'output_tokens': 30}
By default messages must be in user, assistant, user format. If this isn’t followed (aka calling chat()
without a user message) it will error out:
try: chat()
except ValueError as e: print("Error:", e)
Error: Prompt must be given after assistant completion, or use `self.cont_pr`.
Setting cont_pr
allows a “default prompt” to be specified when a prompt isn’t specified. Usually used to prompt the model to continue.
= "keep going..."
chat.cont_pr chat()
Beyond personal fulfillment, life’s meaning involves: - Making a positive impact on others - Learning and growing continuously - Creating something lasting - Finding love and connection - Discovering your unique purpose - Contributing to something bigger than yourself - Experiencing joy and wonder - Overcoming challenges - Leaving the world better than you found it
- id:
msg_01Kb8dWTbKMjknS5jAypYrpQ
- content:
[{'text': "Beyond personal fulfillment, life's meaning involves:\n- Making a positive impact on others\n- Learning and growing continuously \n- Creating something lasting\n- Finding love and connection\n- Discovering your unique purpose\n- Contributing to something bigger than yourself\n- Experiencing joy and wonder\n- Overcoming challenges\n- Leaving the world better than you found it", 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 105, 'output_tokens': 79}
We can also use streaming:
= Chat(model, sp=sp)
chat for o in chat("I'm Jeremy", stream=True): print(o, end='')
Hi Jeremy! Nice to meet you. How are you today?
for o in chat(q, prefill=pref, stream=True): print(o, end='')
According to Douglas Adams, 42. More seriously: to find purpose, create meaning, and positively impact others while experiencing personal growth and fulfillment.
Chat tool use
We automagically get streamlined tool use as well:
= f"What is {a}+{b}?"
pr pr
'What is 604542+6458932?'
= Chat(model, sp=sp, tools=[sums])
chat = chat(pr)
r r
Finding the sum of 604542 and 6458932
Let me calculate that sum for you.
- id:
msg_019jR6gdnNyASs4wfbjDVVTq
- content:
[{'text': 'Let me calculate that sum for you.', 'type': 'text'}, {'id': 'toolu_01Bb878PkqVaqWqJxc6FXbkV', 'input': {'a': 604542, 'b': 6458932}, 'name': 'sums', 'type': 'tool_use'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
tool_use
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 437, 'output_tokens': 81}
Now we need to send this result to Claude—calling the object with no parameters tells it to return the tool result to Claude:
chat()
604542 + 6458932 = 7063474
- id:
msg_01DPwUqfkGTRrRDWuRZEt4NU
- content:
[{'text': '604542 + 6458932 = 7063474', 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 532, 'output_tokens': 18}
It should be correct, because it actually used our Python function to do the addition. Let’s check:
+b a
7063474
Let’s test a function with user defined types.
= Chat(model, sp=sp, tools=[find_page])
chat = chat("How many pages is three quarters of the way through my 80 page edition of Tao Te Ching?")
r r
Let me help you find the page number that represents 75% (three quarters) of your Tao Te Ching edition.
- id:
msg_0177b8XBDjc6nbdMYxLAE1Q2
- content:
[{'text': 'Let me help you find the page number that represents 75% (three quarters) of your Tao Te Ching edition.', 'type': 'text'}, {'id': 'toolu_01CEDmnCCrJUSQENLiiSxuwr', 'input': {'book': {'title': 'Tao Te Ching', 'pages': 80}, 'percent': 75}, 'name': 'find_page', 'type': 'tool_use'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
tool_use
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 547, 'output_tokens': 115}
Now we need to send this result to Claude—calling the object with no parameters tells it to return the tool result to Claude:
chat()
Page 60 marks three quarters of the way through your 80-page edition of the Tao Te Ching.
- id:
msg_01Lhw6dyaxHgEPhQvVGHT6Rr
- content:
[{'text': 'Page 60 marks three quarters of the way through your 80-page edition of the Tao Te Ching.', 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 674, 'output_tokens': 31}
It should be correct, because it actually used our Python function to do the addition. Let’s check:
80 * .75
60.0
Exported source
@patch
def _repr_markdown_(self:Chat):
if not hasattr(self.c, 'result'): return 'No results yet'
= contents(self.c.result)
last_msg
def fmt_msg(m):
= contents(m)
t if isinstance(t, dict): return t['content']
return t
= '\n\n'.join(f"**{m['role']}**: {fmt_msg(m)}"
history for m in self.h)
= self.c._repr_markdown_().split('\n\n')[-1]
det return f"""{last_msg}
<details>
<summary>History</summary>
{history}
</details>
{det}"""
chat
Page 60 marks three quarters of the way through your 80-page edition of the Tao Te Ching.
History
user: H
assistant: Let me help you find the page number that represents 75% (three quarters) of your Tao Te Ching edition.
user: 60
assistant: Page 60 marks three quarters of the way through your 80-page edition of the Tao Te Ching.Metric | Count | Cost (USD) |
---|---|---|
Input tokens | 1,221 | 0.003663 |
Output tokens | 146 | 0.002190 |
Cache tokens | 0 | 0.000000 |
Total | 1,367 | $0.005853 |
Images
Claude can handle image data as well. As everyone knows, when testing image APIs you have to use a cute puppy.
# Image is Cute_dog.jpg from Wikimedia
= Path('samples/puppy.jpg')
fn =fn, width=200) display.Image(filename
= fn.read_bytes() img
Claude expects an image message to have the following structure
{'role': 'user',
'content': [
'type':'text', 'text':'What is in the image?'},
{
{'type':'image',
'source': {
'type':'base64', 'media_type':'media_type', 'data': 'data'
}
}
] }
msglm
automatically detects if a message is an image, encodes it, and generates the data structure above. All we need to do is a create a list containing our image and a query and then pass it to mk_msg
.
Let’s try it out…
= "In brief, what color flowers are in this image?"
q = mk_msg([img, q]) msg
c([msg])
In this adorable puppy photo, there are purple/lavender colored asters or daisy-like flowers in the background.
- id:
msg_01CjhuZGeSYsKbP2Lq3ASUGx
- content:
[{'text': 'In this adorable puppy photo, there are purple/lavender colored asters or daisy-like flowers in the background.', 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 110, 'output_tokens': 30}
You don’t need to call mk_msg
on each individual message before passing them to the Chat
class. Instead you can pass your messages in a list and the Chat
class will automatically call mk_msgs
in the background.
"How are you?", r]) c([
For messages that contain multiple content types (like an image with a question), you’ll need to enclose the message contents in a list as shown below:
"How are you?", r, [img, q]]) c([
= Chat(model)
c c([img, q])
In this adorable puppy photo, there are purple/lavender colored asters or daisy-like flowers in the background.
- id:
msg_01HaguXusUjx8JUTyidCk9t4
- content:
[{'text': 'In this adorable puppy photo, there are purple/lavender colored asters or daisy-like flowers in the background.', 'type': 'text'}]
- model:
claude-3-5-sonnet-20241022
- role:
assistant
- stop_reason:
end_turn
- stop_sequence:
None
- type:
message
- usage:
{'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 110, 'output_tokens': 30}
contents
contents (r)
Helper to get the contents from Claude response r
.
Exported source
def contents(r):
"Helper to get the contents from Claude response `r`."
= find_block(r)
blk if not blk and r.content: blk = r.content[0]
if hasattr(blk,'text'): return blk.text.strip()
elif hasattr(blk,'content'): return blk.content.strip()
elif hasattr(blk,'source'): return f'*Media Type - {blk.type}*'
return str(blk)
0]) contents(c.h[
'*Media Type - image*'
c
In this adorable puppy photo, there are purple/lavender colored asters or daisy-like flowers in the background.
History
user: Media Type - image
assistant: In this adorable puppy photo, there are purple/lavender colored asters or daisy-like flowers in the background.Metric | Count | Cost (USD) |
---|---|---|
Input tokens | 110 | 0.000330 |
Output tokens | 30 | 0.000450 |
Cache tokens | 0 | 0.000000 |
Total | 140 | $0.000780 |
Unfortunately, not all Claude models support images 😞. This table summarizes the capabilities of each Claude model and the different modalities they support.
Caching
Claude supports context caching by adding a cache_control
header to the message content.
{"role": "user",
"content": [
{"type": "text",
"text": "Please cache my message",
"cache_control": {"type": "ephemeral"}
}
] }
To cache a message, we simply set cache=True
when calling mk_msg
.
'hi', 'there'], cache=True) mk_msg([
{ 'content': [ {'text': 'hi', 'type': 'text'},
{ 'cache_control': {'type': 'ephemeral'},
'text': 'there',
'type': 'text'}],
'role': 'user'}
Third party providers
Amazon Bedrock
These are Amazon’s current Claude models:
models_aws
['claude-3-5-haiku-20241022',
'anthropic.claude-3-opus-20240229-v1:0',
'anthropic.claude-3-5-sonnet-20241022-v2:0',
'anthropic.claude-3-sonnet-20240229-v1:0']
anthropic
at version 0.34.2 seems not to install boto3
as a dependency. You may need to do a pip install boto3
or the creation of the Client
below fails.
Provided boto3
is installed, we otherwise don’t need any extra code to support Amazon Bedrock – we just have to set up the approach client:
= AnthropicBedrock(
ab =os.environ['AWS_ACCESS_KEY'],
aws_access_key=os.environ['AWS_SECRET_KEY'],
aws_secret_key
)= Client(models_aws[-1], ab) client
= Chat(cli=client) chat
"I'm Jeremy") chat(
Google Vertex
models_goog
from anthropic import AnthropicVertex
import google.auth
= google.auth.default()[1]
project_id = "us-east5"
region = AnthropicVertex(project_id=project_id, region=region)
gv = Client(models_goog[-1], gv) client
= Chat(cli=client) chat
"I'm Jeremy") chat(