The async version

Setup

Async SDK

model = models[1]
cli = AsyncAnthropic()
prompt = "I'm Jeremy"
m = mk_msg(prompt)
r = await cli.messages.create(messages=[m], model=model, max_tokens=100)
r

Hi Jeremy! Nice to meet you. I’m Claude. How can I help you today?

  • id: msg_01B9MPdH8yjfF3sCSUpqjdsa
  • content: [{'text': "Hi Jeremy! Nice to meet you. I'm Claude. How can I help you today?", 'type': 'text'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: end_turn
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 10, 'output_tokens': 22}
msgs = mk_msgs([prompt, r, "I forgot my name. Can you remind me please?"]) 
msgs
[{'role': 'user', 'content': "I'm Jeremy"},
 {'role': 'assistant',
  'content': [TextBlock(text="Hi Jeremy! Nice to meet you. I'm Claude. How can I help you today?", type='text')]},
 {'role': 'user', 'content': 'I forgot my name. Can you remind me please?'}]
await cli.messages.create(messages=msgs, model=model, max_tokens=200)

You just told me your name is Jeremy.

  • id: msg_01RT1QZUtAGEG7p6oybG4gWD
  • content: [{'text': 'You just told me your name is Jeremy.', 'type': 'text'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: end_turn
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 46, 'output_tokens': 12}

source

AsyncClient

 AsyncClient (model, cli=None, log=False, cache=False)

Async Anthropic messages client.

Exported source
class AsyncClient(Client):
    def __init__(self, model, cli=None, log=False, cache=False):
        "Async Anthropic messages client."
        super().__init__(model,cli,log,cache)
        if not cli: self.c = AsyncAnthropic(default_headers={'anthropic-beta': 'prompt-caching-2024-07-31'})
c = AsyncClient(model)
c._r(r)
c.use
In: 10; Out: 22; Cache create: 0; Cache read: 0; Total: 32

source

AsyncClient.__call__

 AsyncClient.__call__ (msgs:list, sp='', temp=0, maxtok=4096, prefill='',
                       stream:bool=False, stop=None,
                       tools:Optional[list]=None,
                       tool_choice:Optional[dict]=None, cli=None,
                       log=False, cache=False)

Make an async call to Claude.

Type Default Details
msgs list List of messages in the dialog
sp str The system prompt
temp int 0 Temperature
maxtok int 4096 Maximum tokens
prefill str Optional prefill to pass to Claude as start of its response
stream bool False Stream response?
stop NoneType None Stop sequence
tools Optional None List of tools to make available to Claude
tool_choice Optional None Optionally force use of some tool
cli NoneType None
log bool False
cache bool False
Exported source
@patch
async def _stream(self:AsyncClient, msgs:list, prefill='', **kwargs):
    async with self.c.messages.stream(model=self.model, messages=mk_msgs(msgs, cache=self.cache), **kwargs) as s:
        if prefill: yield prefill
        async for o in s.text_stream: yield o
        self._log(await s.get_final_message(), prefill, msgs, kwargs)
Exported source
@patch
@delegates(Client)
async def __call__(self:AsyncClient,
             msgs:list, # List of messages in the dialog
             sp='', # The system prompt
             temp=0, # Temperature
             maxtok=4096, # Maximum tokens
             prefill='', # Optional prefill to pass to Claude as start of its response
             stream:bool=False, # Stream response?
             stop=None, # Stop sequence
             tools:Optional[list]=None, # List of tools to make available to Claude
             tool_choice:Optional[dict]=None, # Optionally force use of some tool
             **kwargs):
    "Make an async call to Claude."
    if tools: kwargs['tools'] = [get_schema(o) for o in listify(tools)]
    if tool_choice: kwargs['tool_choice'] = mk_tool_choice(tool_choice)
    msgs = self._precall(msgs, prefill, stop, kwargs)
    if any(t == 'image' for t in get_types(msgs)): assert not self.text_only, f"Images are not supported by the current model type: {self.model}"
    if stream: return self._stream(msgs, prefill=prefill, max_tokens=maxtok, system=sp, temperature=temp, **kwargs)
    res = await self.c.messages.create(
        model=self.model, messages=msgs, max_tokens=maxtok, system=sp, temperature=temp, **kwargs)
    return self._log(res, prefill, msgs, maxtok, sp, temp, stream=stream, stop=stop, **kwargs)
c = AsyncClient(model, log=True)
c.use
In: 0; Out: 0; Cache create: 0; Cache read: 0; Total: 0
c.model = models[1]
await c('Hi')

Hello! How can I help you today?

  • id: msg_01QJQMP2KX5zChTbjuS2rrLA
  • content: [{'citations': None, 'text': 'Hello! How can I help you today?', 'type': 'text'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: end_turn
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 8, 'output_tokens': 12}
c.use
In: 8; Out: 12; Cache create: 0; Cache read: 0; Total: 20
q = "Concisely, what is the meaning of life?"
pref = 'According to Douglas Adams,'
await c(q, prefill=pref)

According to Douglas Adams, it’s 42. More seriously, there’s no universal answer - it’s deeply personal. Common perspectives include: finding happiness, making meaningful connections, pursuing purpose through work/creativity, helping others, or simply experiencing and appreciating existence.

  • id: msg_01DETfjeGKHJHTCBcinSyvYg
  • content: [{'text': "According to Douglas Adams, it's 42. More seriously, there's no universal answer - it's deeply personal. Common perspectives include: finding happiness, making meaningful connections, pursuing purpose through work/creativity, helping others, or simply experiencing and appreciating existence.", 'type': 'text'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: end_turn
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 24, 'output_tokens': 52}
c.use
In: 32; Out: 64; Cache create: 0; Cache read: 0; Total: 96
async for o in await c(q, prefill=pref, stream=True): print(o, end='')
According to Douglas Adams,  it's 42. More seriously, there's no universal answer - it's deeply personal. Common perspectives include: finding happiness, creating meaning through relationships and achievements, pursuing knowledge, helping others, or following spiritual/religious beliefs. You get to decide what gives your life meaning.
c.use
In: 56; Out: 124; Cache create: 0; Cache read: 0; Total: 180
def sums(
    a:int,  # First thing to sum
    b:int=1 # Second thing to sum
) -> int: # The sum of the inputs
    "Adds a + b."
    print(f"Finding the sum of {a} and {b}")
    return a + b
a,b = 604542,6458932
pr = f"What is {a}+{b}?"
sp = "You are a summing expert."
tools=[sums]
choice = mk_tool_choice('sums')
choice
{'type': 'tool', 'name': 'sums'}
msgs = mk_msgs(pr)
r = await c(msgs, sp=sp, tools=tools, tool_choice=choice)
r

ToolUseBlock(id=‘toolu_0138PU6MrjrcgWuuceEwCKDK’, input={‘a’: 604542, ‘b’: 6458932}, name=‘sums’, type=‘tool_use’)

  • id: msg_01HE98wyEqPtHGq7H3ACGhrV
  • content: [{'id': 'toolu_0138PU6MrjrcgWuuceEwCKDK', 'input': {'a': 604542, 'b': 6458932}, 'name': 'sums', 'type': 'tool_use'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: tool_use
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 438, 'output_tokens': 57}
tr = mk_toolres(r, ns=globals())
tr
Finding the sum of 604542 and 6458932
[{'role': 'assistant',
  'content': [ToolUseBlock(id='toolu_0138PU6MrjrcgWuuceEwCKDK', input={'a': 604542, 'b': 6458932}, name='sums', type='tool_use')]},
 {'role': 'user',
  'content': [{'type': 'tool_result',
    'tool_use_id': 'toolu_0138PU6MrjrcgWuuceEwCKDK',
    'content': '7063474'}]}]
msgs += tr
r = contents(await c(msgs, sp=sp, tools=sums))
r
'The sum of 604542 and 6458932 is 7063474.'

Structured Output


source

AsyncClient.structured

 AsyncClient.structured (msgs:list, tools:Optional[list]=None,
                         obj:Optional=None,
                         ns:Optional[collections.abc.Mapping]=None, sp='',
                         temp=0, maxtok=4096, prefill='',
                         stream:bool=False, stop=None,
                         tool_choice:Optional[dict]=None,
                         metadata:MetadataParam|NotGiven=NOT_GIVEN,
                         stop_sequences:List[str]|NotGiven=NOT_GIVEN, syst
                         em:Union[str,Iterable[TextBlockParam]]|NotGiven=N
                         OT_GIVEN, temperature:float|NotGiven=NOT_GIVEN,
                         top_k:int|NotGiven=NOT_GIVEN,
                         top_p:float|NotGiven=NOT_GIVEN,
                         extra_headers:Headers|None=None,
                         extra_query:Query|None=None,
                         extra_body:Body|None=None, timeout:float|httpx.Ti
                         meout|None|NotGiven=NOT_GIVEN)

Return the value of all tool calls (generally used for structured outputs)

Type Default Details
msgs list List of messages in the dialog
tools Optional None List of tools to make available to Claude
obj Optional None Class to search for tools
ns Optional None Namespace to search for tools
sp str The system prompt
temp int 0 Temperature
maxtok int 4096 Maximum tokens
prefill str Optional prefill to pass to Claude as start of its response
stream bool False Stream response?
stop NoneType None Stop sequence
tool_choice Optional None Optionally force use of some tool
metadata MetadataParam | NotGiven NOT_GIVEN
stop_sequences List[str] | NotGiven NOT_GIVEN
system Union[str, Iterable[TextBlockParam]] | NotGiven NOT_GIVEN
temperature float | NotGiven NOT_GIVEN
top_k int | NotGiven NOT_GIVEN
top_p float | NotGiven NOT_GIVEN
extra_headers Optional None Use the following arguments if you need to pass additional parameters to the API that aren’t available via kwargs.
The extra values given here take precedence over values defined on the client or passed to this method.
extra_query Query | None None
extra_body Body | None None
timeout float | httpx.Timeout | None | NotGiven NOT_GIVEN
await c.structured(pr, sums)
Finding the sum of 604542 and 6458932
[7063474]
c

ToolUseBlock(id=‘toolu_01MGLN3RSg7ZEVghQ8vBbFvK’, input={‘a’: 604542, ‘b’: 6458932}, name=‘sums’, type=‘tool_use’)

Metric Count Cost (USD)
Input tokens 1,448 0.004344
Output tokens 261 0.003915
Cache tokens 0 0.000000
Total 1,709 $0.008259

AsyncChat


source

AsyncChat

 AsyncChat (model:Optional[str]=None,
            cli:Optional[claudette.core.Client]=None, sp='',
            tools:Optional[list]=None, temp=0, cont_pr:Optional[str]=None,
            cache:bool=False)

Anthropic async chat client.

Type Default Details
model Optional None Model to use (leave empty if passing cli)
cli Optional None Client to use (leave empty if passing model)
sp str
tools Optional None
temp int 0
cont_pr Optional None
cache bool False
Exported source
@delegates()
class AsyncChat(Chat):
    def __init__(self,
                 model:Optional[str]=None, # Model to use (leave empty if passing `cli`)
                 cli:Optional[Client]=None, # Client to use (leave empty if passing `model`)
                 **kwargs):
        "Anthropic async chat client."
        super().__init__(model, cli, **kwargs)
        if not cli: self.c = AsyncClient(model)
sp = "Never mention what tools you use."
chat = AsyncChat(model, sp=sp)
chat.c.use, chat.h
(In: 0; Out: 0; Cache create: 0; Cache read: 0; Total: 0, [])

source

AsyncChat.__call__

 AsyncChat.__call__ (pr=None, temp=None, maxtok=4096, stream=False,
                     prefill='',
                     tool_choice:Union[str,bool,dict,NoneType]=None, **kw)

Call self as a function.

Type Default Details
pr NoneType None Prompt / message
temp NoneType None Temperature
maxtok int 4096 Maximum tokens
stream bool False Stream response?
prefill str Optional prefill to pass to Claude as start of its response
tool_choice Union None Optionally force use of some tool
kw VAR_KEYWORD
Exported source
@patch
async def _stream(self:AsyncChat, res):
    async for o in res: yield o
    self.h += mk_toolres(self.c.result, ns=self.tools, obj=self)
Exported source
@patch
async def _append_pr(self:AsyncChat, pr=None):
    prev_role = nested_idx(self.h, -1, 'role') if self.h else 'assistant' # First message should be 'user' if no history
    if pr and prev_role == 'user': await self()
    self._post_pr(pr, prev_role)
Exported source
@patch
async def __call__(self:AsyncChat,
                   pr=None,  # Prompt / message
                   temp=None, # Temperature
                   maxtok=4096, # Maximum tokens
                   stream=False, # Stream response?
                   prefill='', # Optional prefill to pass to Claude as start of its response
                   tool_choice:Optional[Union[str,bool,dict]]=None, # Optionally force use of some tool
                   **kw):
    if temp is None: temp=self.temp
    await self._append_pr(pr)
    res = await self.c(self.h, stream=stream, prefill=prefill, sp=self.sp, temp=temp, maxtok=maxtok,
                 tools=self.tools, tool_choice=tool_choice,**kw)
    if stream: return self._stream(res)
    self.h += mk_toolres(self.c.result, ns=mk_ns(*listify(self.tools)))
    return res
await chat("I'm Jeremy")
await chat("What's my name?")

Your name is Jeremy.

  • id: msg_01BXAR1LsLKWC48tGqhsCwvK
  • content: [{'text': 'Your name is Jeremy.', 'type': 'text'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: end_turn
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 41, 'output_tokens': 8}
q = "Concisely, what is the meaning of life?"
pref = 'According to Douglas Adams,'
await chat(q, prefill=pref)

According to Douglas Adams, 42. But in reality, it’s to find personal meaning through experiences, relationships, and pursuing what matters to you.

  • id: msg_019JMS841eTKjteomdZPcxUh
  • content: [{'text': "According to Douglas Adams, 42. But in reality, it's to find personal meaning through experiences, relationships, and pursuing what matters to you.", 'type': 'text'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: end_turn
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 69, 'output_tokens': 28}
chat = AsyncChat(model, sp=sp)
async for o in await chat("I'm Jeremy", stream=True): print(o, end='')
Hello Jeremy! Nice to meet you. How are you today?
pr = f"What is {a}+{b}?"
chat = AsyncChat(model, sp=sp, tools=[sums])
r = await chat(pr)
r
Finding the sum of 604542 and 6458932

Let me calculate that sum for you.

  • id: msg_014yUKprFaUmofUXFRCzDNEi
  • content: [{'text': 'Let me calculate that sum for you.', 'type': 'text'}, {'id': 'toolu_01CgQzpBcF9TgriNCfRxQyw4', 'input': {'a': 604542, 'b': 6458932}, 'name': 'sums', 'type': 'tool_use'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: tool_use
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 437, 'output_tokens': 81}
pr += " Say the answer in a sentence."
chat = AsyncChat(model, sp=sp, tools=[sums])
r = await chat(pr)
r
Finding the sum of 604542 and 6458932

Let me calculate that sum for you.

  • id: msg_01Fz1v4XAo6kVy4tN78C1ANT
  • content: [{'text': 'Let me calculate that sum for you.', 'type': 'text'}, {'id': 'toolu_01LzBzw8C9gVJBo4QwDqALhZ', 'input': {'a': 604542, 'b': 6458932}, 'name': 'sums', 'type': 'tool_use'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: tool_use
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 444, 'output_tokens': 81}
fn = Path('samples/puppy.jpg')
img = fn.read_bytes()
display.Image(img)

q = "In brief, what color flowers are in this image?"
msg = mk_msg([img, q])
await c([msg])

In this adorable puppy photo, there are purple/lavender colored flowers (appears to be asters or similar daisy-like flowers) in the background.

  • id: msg_01AfDQFSfMvqPb95VoLcCJHY
  • content: [{'text': 'In this adorable puppy photo, there are purple/lavender colored flowers (appears to be asters or similar daisy-like flowers) in the background.', 'type': 'text'}]
  • model: claude-3-5-sonnet-20241022
  • role: assistant
  • stop_reason: end_turn
  • stop_sequence: None
  • type: message
  • usage: {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 110, 'output_tokens': 37}
chat = AsyncChat(model, sp=sp, cache=True)
await chat("Lorem ipsum dolor sit amet" * 150)
chat.use
In: 4; Out: 117; Cache create: 0; Cache read: 1058; Total: 1179
await chat("Whoops, sorry about that!")
chat.use
In: 8; Out: 150; Cache create: 0; Cache read: 2244; Total: 2402